Forest simulation in industrial CFD codes

Petter Cedell, 2019-06-13

23/06/2023 Confidentiality – Critical (C4), High (C3), Medium (C2), None (C1)

Problem formulation

- Onshore wind power is growing rapidly
- Most suitable locations have already been built upon
- Installation planned in the northern parts of Sweden
 - Lower population density easier to acquire permit
 - 58% tree coverage [1] & complex terrain
- Expensive and time demanding with physical measurements
 - Complement with CFD simulations
- No industry consensus on how to estimate wind conditions in forested areas
- Objective is to decrease the uncertainty in the results of the CFD simulations

- Background Forest simulation and modelling
- Sensitivity analysis
- Validation with LES data
- Simulations for clearings
- Case study Rynningsnäs
- Conclusions

Background - Forest simulation and modelling

- Sensitivity analysis
- Validation with LES data
- Simulations for clearings
- Case study Rynningsnäs
- Conclusions

Forest simulation

- Inlet profile logarithmic
- Expecting to see momentum being absorbed by the forest
- Higher turbulence regime above forest
- How is forest modelled in CFD tools?

Ζ

Forest simulation

- 1. Ideally: No slip BC for all forest with complete cell coverage
 - Computational heavy and not applicable large scale
- 2. Momentum sink $S_{u,i} = -\rho a_f c_d U^2$
 - a_f , leaf area density $[m^2/m^3] \rightarrow LAI = \int_{a_f}^{h_c} a_f dz$
 - Provided from means of aerial scans (skogsstyrelsen)
 - c_d , quantify the drag or resistance of an object
- 3. Constant a_f over tree height, model used in WindSim
- 4. No information about the LAI, $C_2 = const.$

$C_2 = \frac{LAI}{H}c_d$	Forest characteristics	LAI	c_d	H[m]	C_2
	Very sparse Slightly sparse Slightly donso	0,25 1 4	0,2 0,2 0,2	30 30 30	0,0017 0,0067 0.0267
	Very dense	4 16	$^{0,2}_{0,2}$	30 30	0,0207

Forest simulation

- 5. Instead of modelling forest: Imposing roughness maps from data bases
- For instance: CORINE 2006, Wind Atlas etc.
- Objective roughness approach (ORA) Create roughness maps from tree height
- Modelling the forest is the main focus of the master thesis

Forest modelling

- WindSim, (commercial) software used for this study
- Uses the 3D Reynolds-Average Navier-Stokes (RANS) equation to simulate the flow characteristics

1.
$$\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\nu \frac{\partial U_i}{\partial x_j} - \overline{u'_i u'_j} \right) + \overline{S_{u,i}}$$
$$\overline{S_{u,i}} = -\overline{\rho C_2 U |U|}$$

- Last term is a momentum sink used to represent impact of e.g. a forest
- C₂ is the forest force resistive constant

Forest modelling

- Solve Reynolds stress by applying Eddy viscosity model
- Introduce k- ϵ turbulence model + transport equation k and ϵ
- Introduce turbulence sources

2.
$$\tau_{ij} = -\rho \overline{u'_{i} u'_{j}} = \mu_{t} \left(\frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}} \right) - \frac{2}{3} \rho k \delta_{ij}$$
4. Rate of change = production - destruction + transportation + turbulent sources
$$\frac{Dk}{Dt} = P - \varepsilon + \frac{\partial}{\partial x_{j}} \left(\left(\nu + \frac{\nu_{t}}{\sigma_{k}} \right) \frac{\partial k}{\partial x_{j}} \right) + S_{k} \\ \frac{D\varepsilon}{Dt} = (C_{\varepsilon 1}P - C_{\varepsilon 2}\varepsilon) \frac{\varepsilon}{k} + \frac{\partial}{\partial} x_{j} \left(\left(\nu + \frac{\nu_{t}}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial x_{j}} \right) + S_{\varepsilon} \\ \frac{D\varepsilon}{Dt} = C_{\varepsilon 1}P - C_{\varepsilon 2}\varepsilon) \frac{\varepsilon}{k} + \frac{\partial}{\partial} x_{j} \left(\left(\nu + \frac{\nu_{t}}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial x_{j}} \right) + S_{\varepsilon} \\ \frac{S_{k} = C_{2}(\beta_{P}|U|^{3} - \beta_{D}|U|k)}{S_{\varepsilon} = C_{2}(C_{\varepsilon 4}\beta_{P}\frac{\varepsilon}{k}|U|^{3} - C_{\varepsilon 5}\beta_{D}|U|\varepsilon) \\ \frac{S_{\varepsilon} = C_{2}(C_{\varepsilon 4}\beta_{P}\frac{\varepsilon}{k}|U|^{3} - C_{\varepsilon 5}\beta_{D}$$

 $C_{\epsilon 5} = 1,24$

q

23/06/2023 Confidentiality – Critical (C4), High (C3), Medium (C2), None (C1)

Background - Forest simulation and modelling

Sensitivity analysis

- Validation with LES data
- Simulations for clearings
- Case study Rynningsnäs
- Conclusions

Top boundary condition

- 3D domain, no impact from y-direction
 - $L_x = 2400 \text{ m}, L_y = 40 \text{ m}, L_z = 600 \text{ m}$
 - Cell size x-y = 5 × 5 m, $N_x \times N_y \times N_z$ = 230 000
 - $h_c = 30$ m, length of the forest = 1 200 m
 - Full forest with constant z₀
 - Wind speed normalized at 5 $\rm h_{c}$ inlet
- Top boundary conditions
 - Constant pressure (p = c)
 - No friction wall $(\tau = 0)$ z/h_c
 - Diffusive link ($p \& \tau = c$)
- Avoid physical speed-up

Forest cell count

- Same domain as for top boundary condition ٠
- Varying amount of cells in vertical direction of forest, between 3 15•
- Limited amount of cells to employ in WindSim (60) trade off •
- Middle of the forest: FCC = 3 is 1,8% higher than FCC = 12 at 3 h_c •

12

•

- Background Forest simulation and modelling
- Sensitivity analysis

Validation with LES data

- Simulations for clearings
- Case study Rynningsnäs
- Conclusions

- LES data provided from Antonio [3]
- Same domain as in sensitivity analysis
- Full forest, LAI = 2 (slightly sparse)
 - Reduction of wind speed in front of the forest
 - Speed reduction in forest region
 - Similar share profile after leading edge of the forest
 - Similar recovery after forest

- Extracting vertical wind profiles
- Inlet is different due to laminar/ turbulent flow
 - WindSim continuously develops
 the wind profile
- Different LAD profile reduction of wind speed inside forest
- Very good agreement above canopy

 $x/h_c = 0$

0.6 0.8

0.2 0.4

0

 $x/h_{c} = -10$

0.6

0.8

0.2 0.4

 $x/h_c = 10$

23/06/2023 Confidentiality – Critical (C4), High (C3), Medium (C

- $TI = \frac{\sqrt{k}}{U} \cdot 100$, dimensionless
- Figure starts at $z/h_c = 1$
- High turbulence region to 3 $\rm h_{\rm c}$
- Forest affects up to 5 $\rm h_{c}$
- Good agreement
 - Except at the leading edge of the canopy
 - Accurately identify regions with low TI

- Good agreement above forest and at inlet
 - Similar gradient at all x/h_c
- Inside of the forest LES displays a higher TI

- Background Forest simulation and modelling
- Sensitivity analysis
- Validation with LES data
- Simulations for clearings
- Case study Rynningsnäs
- Conclusions

- · Forest is not always present but usually followed by clearings, which is why it is important to understand their influence on the wind profile and TI
- Varying clearing sizes between full forest, 10 h_c and ^{zh_c} 20 h_c
- With both LAI = 2 (slightly sparse) and LAI = 5 (slightly dense) forest

 \mathbf{A}

Confidentiality – Critical (C4), High (C3), Medium (C2), None (C1)

- Profiles in the middle of the clearing
- Similar results for LAI = 2 and 5
 - Slightly higher horizontal wind speed for higher LAI above 4 $\rm h_{c}$
 - Full forest yields the highest horizontal wind speed above 4 $\rm h_{c}$
 - Higher wind speed below 3,5 h_c the larger the clearing

- Displaying wind direction ± 8° with regards horizontal plane
 - IEC recommends angle < |8| [5]
 - 8° at approximately 3 h_c for LAI = 5, lower for LAI = 2
- Similar angle at the leading and trailing edge of the canopy for all clearings
- Larger clearing yields higher wind angle inside the clearing

- Background Forest simulation and modelling
- Sensitivity analysis
- Validation with LES data
- Simulations for clearings
- Case study Rynningsnäs
- Conclusions

Case study

- Swedish forest Rynningsnäs
- Atmospheric measurements:
 - PAI, tree height and elevation
- Consist mainly of Scot Pines
- Simulating five different cases
 - 1. Bin discretization (RDV60)
 - 2. Industrial standard (RDV6)
 - 3. Constant C₂
 - 4. ORA20d
 - 5. Corine

Figure from Elforsk report [7]

Case study – 3D Domain setup

- Domain size 30 × 30 km, recommendation to use 15 km upstream direction
- Refinement 2 × 2 km around mast, data from 100, 240 and 290°
- Refinement in the vertical direction, equispaced in forest
- Roughly 11 M cells

Forest

23/06/2023 Confidentiality – Critical (C4), High (C3), Medium (C2), None (C1)

Case study – Bin discretization RDV60

- Problem: C₂ matrix can't be implemented directly in WindSim. Simplifications are required
- Poor correlation between tree height and PAI (used in same manner as LAI)
- Instead of 1 PAI per tree height bin
 → several PAI per tree height bin
- 10 tree height bins, each bin has 6 PAI amounting to 60 RDVs (roughness dummy values)
- Forest cell count 12

Case study – Industrial method RDV6

- Easier with PAI α h_c
- Resulting in six tree height bins with six unique C₂ values
 - Forest height below 2,5 m and PAI below 0,1 was neglected and considered as roughness length = 0,05

Case study – Auxiliary simulations

- 1. $C_2 = 0,05$: Some industries apply a constant C_2 for the whole forest
- 2. ORA20d: Objective roughness approach (ORA), roughness map from dividing tree height with a factor of 10 and adding the displacement height [6]
 - Resolution 20 × 20 m in the refinement
- 3. Imposing only roughness map from Corine 2006 database,
 - Resolution of the roughness map was 100 × 100 m

Case study – horizontal wind speed

- Data normalized with U₁₃₈ of measured data
- Similar share for RDV60 and RDV6
 - Good agreement above 80 m
 - Overestimates below 80 m
- Best agreement reached with $C_2 = 0,05$
- ORA20d and Corine overestimates wind speed

Case study - TI

- Poor agreement with measured data for RDV6 and RDV60
- Constant C₂ severely overestimates the TI
- Roughness map approach underestimates the TI
 - ORA20d slightly better estimation than Corine

- Background Forest simulation and modelling
- Sensitivity analysis
- Validation with LES data
- Simulations for clearings
- Case study Rynningsnäs
- Conclusions

Conclusions for the case study

- RDV60 had better agreement with TI than RDV6
 - RDV6 slightly better estimation of the horizontal wind speed
- Best estimation for wind speed was achieved with constant $C_2 = 0,05$
 - Indicates that the impact of the forest is underestimated, most likely due to a too low drag coefficient (0,2)
- Roughness map approach
 - ORA20d yielded better horizontal wind speed and TI than Corine
- Overall: modelling the forest resulted in better agreement with the measured data
- Overestimated TI yields an underestimated horizontal wind speed and vice verse

References

[1]: Fridman, J. (2018). "Forest statistics 2018". In: Official Statistics of Sweden, Swedish University of Agricultural Sciences, ISSN 0280-0543, p. 81.

[2]: Sanz, C. (2003). A note on k – ε modelling of vegetation canopy air-flows, page191-197. Tech. rep. No.108. Kluwer Academic Publishers.

[3]: Segalini, A., T. Nakamura, and K. Fukagata (2016). "A Linearized k –ε Model of Forest Canopies and Clearings". In: Boundary-Layer Meteorology161.3.issn: 1573-1472.doi:10.1007/s10546-016-0190-5.url:https://doi.org/10.1007/s10546-016-0190-5.

[4]: Enevoldsen, P., C. Meissner, and V. Jothiprakasam (2017). Validation of CFD forest simulations based on a global forest parameter database. Power point presentation. WindEurope: Flow modelling for complex conditions

[5]: IEC (2018). "International standard". In: International Electrotechnical Commission Third edition. IEC 61400-1:2005(E), p. 23.

[6]: Floors, R., P. Enevoldsen, N. Davis, J. Arnqvist, and E. Dellwik (2018). "From lidar scans to roughness maps for wind resource modelling in forested areas". In: Wind Energy Science 3.1, pp. 353–370.doi:10.5194/wes-3-353-2018.url:https://www.wind-energ-sci.net/3/353/2018/.